An uncertainty principle for real signals in the fractional Fourier transform domain

نویسندگان

  • Sudarshan Shinde
  • Vikram M. Gadre
چکیده

The fractional Fourier transform (FrFT) can be thought of as a generalization of the Fourier transform to rotate a signal representation by an arbitrary angle in the time–frequency plane. A lower bound on the uncertainty product of signal representations in two FrFT domains for real signals is obtained, and it is shown that a Gaussian signal achieves the lower bound. The effect of shifting and scaling the signal on the uncertainty relation is discussed. An example is given in which the uncertainty relation for a real signal is obtained, and it is shown that this relation matches with that given by the uncertainty relation derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Uncertainty Principle for Discrete Signals

By use of window functions, time-frequency analysis tools like Short Time Fourier Transform overcome a shortcoming of the Fourier Transform and enable us to study the timefrequency characteristics of signals which exhibit transient oscillatory behavior. Since the resulting representations depend on the choice of the window functions, it is important to know how they influence the analyses. One ...

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

Uncertainty principles for hypercomplex signals in the linear canonical transform domains

Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for hypercomplex signals in the linear canonical transform domains, giving the tighter lower bound on ...

متن کامل

Logarithmic uncertainty principle, convolution theorem related to continuous fractional wavelet transform and its properties on a generalized Sobolev space

The continuous fractional wavelet transform (CFrWT) is a nontrivial generalization of the classical wavelet transform (WT) in the fractional Fourier transform (FrFT) domain. Firstly, the RiemannLebesgue lemma for the FrFT is derived, and secondly, the CFrWT in terms of the FrFT is introduced. Based on the CFrWT, a different proof of the inner product relation and the inversion formula of the CF...

متن کامل

Applications on Generalized Two-Dimensional Fractional Sine Transform In the Range

Various transforms are employed for signal processing to obtain useful information, which is not explicitly available when the signal is in the time domain. Most of the real time signals such as speech, biomedical signals, etc., are non-stationary signals. The Fourier transform (FT), used for most of the signal processing applications, determines the frequency components present in the signal b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2001